Dimension maximizing measures for self-affine systems
نویسندگان
چکیده
منابع مشابه
A Class of Self-affine and Self-affine Measures
Let I = {φj}j=1 be an iterated function system (IFS) consisting of a family of contractive affine maps on Rd. Hutchinson [8] proved that there exists a unique compact set K = K(I), called the attractor of the IFS I, such that K = ⋃m j=1 φj(K). Moreover, for any given probability vector p = (p1, . . . , pm), i.e. pj > 0 for all j and ∑m j=1 pj = 1, there exists a unique compactly supported proba...
متن کاملAssouad Dimension of Self-affine Carpets
We calculate the Assouad dimension of the self-affine carpets of Bedford and McMullen, and of Lalley and Gatzouras. We also calculate the conformal Assouad dimension of those carpets that are not self-similar.
متن کاملThe Hausdorff Dimension of the Projections of Self-affine Carpets
We study the orthogonal projections of a large class of self-affine carpets, which contains the carpets of Bedford and McMullen as special cases. Our main result is that if Λ is such a carpet, and certain natural irrationality conditions hold, then every orthogonal projection of Λ in a non-principal direction has Hausdorff dimension min(γ, 1), where γ is the Hausdorff dimension of Λ. This gener...
متن کاملGenericity of Dimension Drop on Self-affine Sets
We prove that generically, for a self-affine set in R, removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore open question.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7103